AIAA-95-1743-CP
/’l/
JUTES A2.17

A Cell-Centered Cartesian Grid Projection Method for the Incompressible Euler
Equations in Complex Geometries

Ann S. Almgren”
John B. Bell -
Center for Computational Sciences and Engineering
Lawrence Livermore National Laboratory
Livermore, CA 94550

Phillip Colella !
Tyler Marthaler!
Dept. of Mechanical Engineering
University of California at Berkeley

Berkeley,

1 Abstract

Many problems in fluid dynamics have domains
with complicated internal or external boundaries
of the flow. Here we present a method for cal-
culating time-dependent incompressible inviscid
flow using a “Cartesian grid” approach for rep-
resenting geometry. In this approach, the body
is represented as an interface embedded in a reg-
ular Cartesian mesh. The basic algorithm is a
fractional-step projection method based on an
approximate projection. The advection step is
based on a Cartesian grid algorithm for compress-
ible flow, in which the discretization of the body
near the flow uses a volume-of-fluid representa-
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tion with a redistribution procedure to eliminate
time-step restrictions due to small cells where the
boundary intersects the mesh. The approximate
projection incorporates knowledge of the body
through volume and area fractions. The method
is demonstrated on flow past a half-cylinder with
vortex shedding.

2 Introduction

Modeling of low Mach number flows in complex
geometries is often required in engineering ap-
plications. In this paper we present a Cartesian
grid algorithm for the unsteady incompressible
Euler equations in which the problem geometry
is represented as a “tracked front” embedded in a
uniform Cartesian grid. The incompressible Eu-
ler equations provide a prototype for more gen-
eral low Mach number flows such as low speed
combustion ([7, 9, 10]). The basic integration
schemne uses a fractional step approach in which
the nonlinear convection equations are approxi-
mated to construct a velocity field without en-
forcing the divergence constraint. In the second
step of the algorithm a discrete projection is ap-
plied to the intermediate velocity field computed
in the first step to enforce the incompressibility
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constraint. The adaptation of the basic projec-
tion methodology to the Cartesian grid setting
combines two different types of techniques devel-
oped for compressibie flows. The key issue in
the advection step is eliminating time-step re-
strictions due to small cells where the boundary
intersects the mesh, and to address this we have
adapted the redistribution techniques developed
by Chern and Colella [5] and Pember et al [11] for
gas dynamics. The work presented here is similar
to earlier work of Almgren et al {1} who present a
similar algorithm. The algorithm presenied here
uses a different projection which requires less 1t~
formation about the geometry so that it 1s more
amenable to automating the construction of the
geoinetric deseription.

In the next section we review the basic frac-
tional step algorithm, introduce the notation of
the Cartesian grid method, and describe the ad-
vection and projection steps for flows with em-
bedded boundaries. In the final two sections we
present numerical results and conclusions. All
results and detailed discussion will be for two
spatial dimensions; the extension to three dimen-
sions will be presented in later work.

3 Basic Algorithm

3.1 Overview of Fractional Step

Formulation

The incompressible Euler equations for constant
density flows can be written as

U +(U-VYU+Vp=0 (3.1.1)
V.U =0. (3.1.2)

Alternatively, {3.1.1) could be written as
U +V-(UU}+Vp=10 (3.1.3)

The projection method is a fractional step
scheme for solving these equations, composed of
an advection step followed by a projection. In
the advection step for cells entirely in the flow
domain we solve the discretization of (3.1.3),

ur-U 1

n
= F(V-(UU)" 34 Vp "7 =0 (3.1.4)

for the intermediate velocity U7} as will be
discussed in section 3.1.5, for small cells adjoin-
ing the body we modify the velocity update us-
ing the convective formulation of the nonlinear
was com-

terins. The pressure gradient at 73
puted in the previous time step and is treated
as a source term iu (3.1.4). The advection terms
(V- @O,
second-order in space and time using an explicit
predictor-corrector scheme; their construction is
described in section 3.1.6.

The velocity field U™ 3s not, in general,
divergence-frec. The projection step of the algo-
rithm decomposes the result of the first step into
a discrete gradient of a scalar potential and an
approximately divergence-free vector field which
correspond, respectively, to the update to the
pressure gradient and the update to the veloc-
itv. In particular, if P represents the projection

are approximated at time £ o

operator then

gt un ve-un
e (B5F) e

At At

- un

VptTE
At )+ P

vp'ts = (I- P) (
Note that the pressure gradient is defined at the
sarne time as the time derivative of velocity, and
therefore at half-time levels.

3.2 Notation

We first introduce the notation used to describe
how the body intersects the computational do-
main. The volume fraction A;; for each cell is
defined as the fraction of the computational cell
B ; that is inside the flow domain. The area frac-
tions QiyL; and G jyd specify the fractions of the
(i+1,7) and (4,5 + 1Y edges, respectively, which
lie inside the flow domain, also known as edge
apertures. A cell entirely within the fluid but
which shares an edge with a full body cell would
have a volume fraction of A = 1 but the area
fraction of the edge corresponding with the body
would be zero. Additionally, external domain
boundaries can be described using zero aperture
edges. We label a cell entirely within the fluid
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(A = 1) as a fluid cell) a cell entirely outside of
the flow domain (A = 0) as a body cell, and a cel}
partially in the fluid (0 < A < 1) as a mized cell

In the method presented here, the state of the
fluid at time ¢ is defined by U/} = (1l vf), the

_1
velocity field in cell B; ; at time #*, and pz-“,- :
the pressure in cell (z,7) at £*~%. The pressure

_1
gradient Gp:-;- * represents the average value of

Vpin cell B; ; at time t" 2

3.3 Discretization of Projection
Operators

The original discretization of the exact projection
operator has the form

P=1-G(L)'D. (3.3.1)

where D and G represent divergence and gra-
dient operators, respectively and L = DG. For
this algorithm, we utilize an approximate projec-
tion, i.e,, P? # P which is described in detail
in [8]. The motivation for using an approximate
projection instead of an exact projection cormes
from the simplicity of the linear algebra associ-
ated with the approximate projection and is de-
scribed in detail in [2]. The projection operator
requires solution of the equation

Lo =p, (3.3.2)

where ¢ is a scalar potential, which in the context
of (3.1.5} is the update to the pressure, and p is
the divergence of the vector field being projected.
In order to calculate the Laplacian L we define
here the traditional MAC divergence and gradi-
ent operators. We first define a divergence opera-
tor DMAC which operates on edge-based vectors:

x X
DMACF — 1 ai+%'jF'+%vj B a‘_%’jF‘-_%,j +
ij Az
¥ Y
a'\i+%Fi.j+§ B R
Ay ) (3.3.3)

Next we define the MAC gradient operators as
follows:

; ~ (C5i+1,;’ - @i,j)
(G—”ACJ )i+lj = =
BN Ar
o i1 iy
(GMAL,yCSJ;_J__i_% — (“J#i_) (3.3.4)

Now we have what we need to define the Lapla-
cian for use in (3.3.2):

I = D.-UAC’GJ\{A(,‘

I the case of no embedded boundaries the re-
sulting stencil for the Laplacian is the standard
five-point siencil, resulting in straightforward lin-
ear algebra to solve (3.3.2). Note that because of
the multiplication of fluxes by arcas in defining
the divergence operator, the Laplacian operator
L does not require that the gradient be defined
on edges with zero length, ie. ¢ need only be
defined in fluid or mixed cells.

In order to solve (3.3.2), point-relaxation is
used with a multigrid accelerator. At the coars-
est level of multigrid, a conjugate gradient solver
is employed to further speed convergence. Typi-
cal multigrid convergence acceleration character-
istics are exhibited by the solver.

3.4 Cell-Centered Projection

In our fractional step formulation, we project
the vector field V = (V= ,V¥) = U‘gtU“ as de-
fined in (3.1.4) onto a subspace of approximately
divergence-free vector fields. To do this according
to (3.3.1), we first must define a divergence given
cell-based values of the temporal derivatives of
the velocity field V. In order to calculate this
divergence we construct an edge-centered vector

field F from the cell-centered field as follows:

:+ J(V) (t+1]+v-l])
1 ‘
B o) =SV + V). (34

Then the divergence is found by applying
(3.3. 3) to the field F.

The cell-centered gradient operator & must de-
fine gradients on all mixed or fluid cells, even
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those adjacent to body cells, and to do this must
extrapolate values of the gradient from cells that
do not border body cells into cells bordering bady
cells. The following protoco! is used to calculate
this gradleut.

if (a1 ;> )and {a; 1 ;> 0) then
(G.IO)IJ = TA (O|+1,} C"i—l‘j)
else if {a; 1, = ) then

=2+ (G Yoy, — (G é)izn,
else if (a,—_%,j = 0) then
=2+ (G7@)iz1j — (G ¢)isa,;

if (a; 541 > 0) and (e, ;_1 > 0) then
(G™¥6)i; = my(@,;ﬂ Bij-1)
else if (a; ;2 = = 0) then
=2+ {G¥@)i ;1 —(G¥d)ij2
etse if (@, ;_1 = 0) then
=24 (GYe)i 41 — (GTV0)ia-

It is important to note that for ¢ells with four
nonzero apertures, the gradient operator in the
projection is just the standard cell-centered gra-
dient operator, which can be thought of as the
average of the appropriate two edge gradients G.

3.5 Advective Derivatives

This section will discuss the steps required to

calculate the term [V . (UU )]MF2 for use in
(3.1.4), given a set of nearly divergence—free edge-
centered velocities centered in time at ¢"t3. The
algorithm is a predictor-corrector method, simi-
lar to that used in [3], but with some modifica-
tions as discussed in [4]. The details of the cur-
rent version without geometry are given in [2].
For simplicity we will assume that the normal
velocity on the embedded boundary is zero; the
treatment of a more general Dirichlet boundary
condition such as inflow is straightforward.

For the construction of the nonlinear advec-
tive terms at t"*3, velocities are defined on all
edges of fluid and mixed cells at £**%; this pro-
cess Tequires values of the velocity and pressure
gradients in the cells on either side of an edge at
#". We must therefore define, at each time step,
ertended states in the body cells adjoining mixed

or fluid cells. We do this in a volume-weighted
fashion:
ZJ:,[EII’J]I(“‘B,AJ) ‘I\‘I-'-{Lk-(

rerd __
b e b Ry
Lak feEnbhd( B ;17 L.L

The intermediate velocity T'7 at time #4118
then defined on ail fuid and mixed cells from
(3.1.4} as

v =u" At({(b . L]”‘r* . Gpu—%-)‘

The time-step restriction of the upwind
method as given by the full-cell stability analysis.

A e AT
max ]ujl ,!LJS =a <1,
i Ax A'U -

is used to set the time step for the overall algo-
rithrn; liere ¢ is the CFL number.

As mentioned earlier, for incompressible flow
the two forms of the momentum equation, (3.1.1)
and (3.1.3), are analytically equivalent. In the
presence of embedded boundaries, the approach
using convective derivatives is stable even for
very small cells, but the convective update and
the conservative update are no longer equivalent.
To construct the convective difference, we must
in some cases extrapolate onto edges which lie
fully or partially within the body, and so the
convective update does not “see” the body other
than through the MAC-projected normal advec-
tion velocities (and the limited slopes).

The conservative update, by contrast, more
correctly represents the body, but is not, in gen-
eral, stable for small cells without a reduction
in time step. In fact, the time step restriction
is such that as the cell volume goes to zero the
time step must also approach zero. We define the
conservative update by

u--yu= L
ot V.Fr1 p vpttr =0, (3.5.1)

+1 4l +
where Ft% _( : _2 U:'+ 3! :1;—2 U:n1+2:) the

MAC projected edge velocme; as defined later,
and evaluate the divergence as f F*t5 .ndA,
where the flux is only integrated on the parts of
the edges of the cell that lie within the fluid.
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A solution in this case is to use a weighted av-
erage of the convective and conscrvative updates,
effectively allowing as much momentuin to pass
into a small cell in a time step as will keep the
scheme stable with respect to the maxinmum cell
size. To maintain conservation in the advectlon
step, the momentum which does not pass into the
small cell is redistributed to the neighboring cells
in a volume weighted fashion. This approach is
modeled on the algorithm of [11, 12], and is based
on the algebraic redistribution scheme of Chern
and Colella [3]. The algorithm is as follows:

1. In all cells construct U
tive form of the advective terms:

using the conserva-

AU = AT
At I il
"BT-(GH—%JF:‘{F;,J‘ - ai*%v]Fi—%,J)
_ a8t . ¥ —a. . ¥
Ay(a=,1+éFs,j+% al-.]"%Fi,jA%)’

where the fluxes are defined as in (3.5.1).
This solution enforces no-flow across the
boundary of the body, but is not necessarily
stable.

2. In mixed cells only construct 6', defined as
U= = U™ — At{(U - V)U]* T3,

The advective term [(U - V)U]**% can be
found from the edge- and time-centered ve-
locities as:

(U - V)U]“*2 =

ntd ntg
. . u. L]k
(i85, 25,

2Azx 5
ath  pomed
( i+%,J_Ui—%,J +
1 n+%
sz( .;+;+”s.f—%)*

(U."f’5 _ptts )

i+l ii-3

The technique for calculating the tirne- and
edge-centered velocities is outlined below in
section 3.6, We will refer to U* as the refer-
ence state.

3. In order to address the stabality issue for
mixed cells, define the difference

QE“)

80 iy

= A”(L' (3.5.2)

in mixed cells only. This is the flux to be

redistributed.

4. The conservative solutlon can be written on

mixed cells as E = U ;t “f‘ s
this qolutlon is not stable for A << 1. Define
mstead U - U'- + &M j; o other words
allow the mixed ccll state to keep the frac-
tion of § M which will keep the scheme stable
given that the time step is set by the full-

cell CFL constraint. Note that for fluid cells

C' -U.

. However,

5. Redistribute the remaining fraction of §3
from mixed cells, that is {1 — A, ;)6M 5, to
the fluid and mixed cells among the eight
neighbors of B; ; in a volume-weighted fash-
ion. Since we redistribute the extensive
rather than intensive quantity (e.g. momen-
tum rather than momentum density), the re-
sulting redistribution has the form

N (1 — Ax,e}0Mi,;
U =Uii+ Y, el
kL€ nbkd(B;,;) ,
where
Met — Z An_p.

n,penbhd(Bi )

6. Finally, subtract the lagged pressure gradi-
ent term from the solution for all fluid and
mixed cells, treating it as a source term:

ﬂ——

Uz, =0, - At(Gp)i;®.  (35.3)

This vector field U™ is the approximation to
the velocity field at t**1; all that remains to
define U™*! is the projection step.

3.6 Calculation of Edge-Centered
Velocities
In the predictor we extrapolate the velocity to

the cell edges at "% using a second-order Tay-
lor serffes expansion in space and time. The
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time derivative in the expansion is replaced using
(3.1.1). neglecting for the time being the pressure
gradient. For edge (7 + 5, j) this gives

- n Az wi ALY
[i‘r%,j:(/ij + (‘ZW—Q )LT:U
At — .
= i (3.6.1)

extrapolated from B; ;, and

Ax o uip gAY
- (T*f Urivrs

(3.6.2)

extrapolated from B¢y ;.

Analogous formulae are used to predict values
at each of the other edpes of the cell. In evaluat-
ing these terms the first-order derivatives normal
to the edge {in this case U;) are evaluated using a
monotonicity-limited second-order slope approx-
imation [6]. These limited slopes are calculated
by first evaluating the central, ‘plus,” and *minus,’
differences as follows

AT = 2*(U,"j “'Uifl,j)
AO = .5*(U§+l'j — Uifl,j)
AT = 2*(U,-+1'j — U,"j).

The limited slope is then defined as
U, = sign(A%) min(|A%, |a~], |A}).

To account for the embedded boundaries, A~ or
A7t are set to zero if the edge over which the
difference is outside the domain. This effectively
reduces the slope calculation to first order near
embedded boundaries, but ensures that only val-
ues from fluid or mixed cells, not extended states,
are used in the slope calculation.

The transverse derivative terms as used in
(3.6.1) and (3.6.2) are evaluated as in [1, 4}, by
choosing a single sided difference in the upwind
direction.

For every edge in the fluid domain, (3.6.1)
and (3.6.2) each give a time-centered estimate of
the velocity vector. A unique edge- and time-
centered value for the velocity is obtained from

the edge states by using an upwinding proce-
dure defined below. The procedure to choose
the unique state U; 1 ; given the left and right

states, UL = UL | and UF = UF
i+5 i+,

15 piven
1. J 5

as:

ot fupjand wigy ;>0
- l -[_ - B .
el = 5([} +UH) ;fu;'j*zt,—+1!j<(]
IEE if u;; and wipq,; <0

An additional condition on the upwinding is
that the upwind state nrust be chosen from a fluid
cell, We follow a similar procedure to construct
L.'

LTINS
T s

In general these normal velocities at the edges
are not divergence-free. In order to make these
velocities divergence-free we apply a MAC pro-
jeetion {4] to the edge-centered velocity field.

AT
pf1c

=1-GMAC (D)7 MY (3.6.3)

on the edge-
The generic

The MAC projection operates
centered velocities, ﬁi+%,jv Uijsy
divergence operator (3.3.3) operates on these ve-
locities directly, and the same standard gradi-
ent operator is used in the construction of DG.
However, the gradient operator GMAC* differs
from GMAC in that GMAC yields only the nor-
mal edge-centered gradients from a cell-centered
scalar field, but GMAC* defines both tangential
and normal gradients. This requires additional
extrapolation in the case of mixed or fluid cells
adjacent to body cells. Calculating this gradient
is done in a series of steps:

o Calculate all normal edge gradients using the
following logic.

if (a1, > 0) then

(G AC‘I¢)§+%J =(¢i+1,; — qﬁi,j) KL;
else if {A;; < 0) then

=2+ (Gd)iy1,; — (G")isn
else

= 2% (Grgﬁ),‘_i‘j — (G:¢)i—2,j

In order for these gradients to be well de-
ﬁsl.;,ed as above, the normal gradients as found
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by the first above conditional must be calcu-
lated throughout the domain before any gra-
dients are found by extrapolation. This cal-
culation includes boundary normal gradients
if apv. Shmilar formulac yield the ¥ direction

normal gradients.

o Caiculate the tangential gradients at the
Lorizontal edges as follows.

if (a;;,: = 1) then
(G_if.i'?-ro‘)i’j+% = .25 %
(sz)i—,i_,,j- (GOt
(Ga)_1; + (GTe)i )

else if {a;_y ;.1 > 0} then

=25 (G"6)iy 41 —{GTO)iia 4t
else

= 2= (Gré)i*_l‘ﬂ% — (Gxé)i-%z‘th%

Analogous formulae yield the y direction
tangential gradients.

e Calculate the tangential MAC gradients on
the boundaries where needed as follows:

GMAC“rqﬁoj —

2+ (G o)1y — (G"F)2,s
GM’AC«ranIj —

2x (GIé)nIfI,j - (Gxé)nr—z,j

With these definitions of the gradient opera-
tors and the divergence operator we define the
following MAC velocities:

nt+i _# MAC
Ui+%‘,- = U:’+%,J' - (G¢);+%,j
Mty MAC»
:’,j+2% =Uij+z — (G¢);,j+% (3.6.4)

4 Numerical Results

Figure 1 shows results of a calculation done using
the algorithm presented in this paper. In this fig-
ure are time series of u,v, and the vorticity. The
test problem is a half circle facing to the left in
a 4xl channel. The center of the half-circle is
located at (1,.5), and the diameter of the half-
cirele is 0.25. The flow is moving left to right
over the half circle and between rigid walls top

and bottom. An outflow boundary condition is
imposed on the right edge. The iritial conditions
are defined by the projection of a uniform let
velocity and quiescent fluid with a shght asym-
metric perturbation upstzeam of the obstruction.

5 Conclusion

We have presented a method for calculation of
time-dependent incompressible inviscid flow in
a domain with embedded boundaries. This ap-
proach combines the basic projection method, us-
ing an approximate projection, with the Carte-
sian grid representation of geomerry. in this
approach, the body 1s represented as an inter-
face embedded in a regular Cartesian mesh. The
adaptation of the higher-order upwind method
to include geometry is modeled on the Carte-
sian grid method for compressible flow. The
discretization of the body near the flow uses a
volume-of-fluid representation with a redistribu-
tion procedure. The approximate projection in-
corporates knowledge of the body through vol-
ume and area fractions. Convergence results for
the projection itself are given as is a result from
the projection calculation.

The method here is presented in two dimen-
sions; the extension to r—z and three dimensions
and to variable density flows, and the inclusion of
this representation with an adaptive mesh refine-
ment algorithm for incompressible fiow are being
developed.
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Time series of scalar quantities from 200 to 1000 timesteps,
calculated on a 128x32 grid.
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